AR1 - 2025/2026 David Kolar

Petit mémo de similitudes directes du plan

Forme complexe

La forme complexe d'une similitude directe est donnée par

$$z' = \alpha z + \beta$$

où α et β sont des nombres complexes quelconques.

Invariants

Les invariants d'une similitude directe $z' = \alpha z + \beta$ sont:

- Si $\alpha = 1$: le vecteur de translation \overrightarrow{u} d'affixe β .
- Si $\alpha \neq 1$:
 - Le centre Ω d'affixe $\omega = \frac{\beta}{1-\alpha}$;
 - L'angle $\theta = \arg(\alpha)$;
 - Le rapport $k = |\alpha|$.

Exemples:

- La similitude z' = z + 1 i est une translation de vecteur $\overrightarrow{u}(1, -1)$;
- La similitude z'=2z est une homothétie de centre $\Omega(0,0)$ et de rapport 2;
- La similitude $z' = \frac{1}{2}z + 1$ est une homothétie de centre $\Omega(2,0)$ et de rapport $\frac{1}{2}$;
- La similitude $z'=e^{i\frac{\pi}{4}}z$ est une rotation d'angle $\theta=\frac{\pi}{4}$ et de centre $\Omega(0,0)$;
- La similitude z'=2iz+1 a pour centre $\Omega\left(\frac{1}{5},\frac{2}{5}\right)$, pour angle $\arg(2i)=\frac{\pi}{2}$ et pour rapport |2i|=2.

AR1 - 2025/2026 David Kolar

Obtenir la forme complexe à partir des invariants

Soit Ω un point du plan d'affixe $\omega \in \mathbf{C}$, $\theta \in \mathbf{R}$ un angle et $k \in \mathbf{R}$ un réel. La similitude directe de centre Ω , d'angle θ et de rapport k a pour forme complexe

$$z' = ke^{i\theta}(z - \omega) + \omega$$

On a donc

$$\alpha = ke^{i\theta}$$
$$\beta = \omega \left(1 - ke^{i\theta}\right)$$

Exemples:

• La similitude directe de centre $\Omega(0,0)$, de rapport 2 et d'angle π a pour forme complexe

$$z' = 2e^{i\pi}(z-0) + 0 = -2z$$

• La similitude directe de centre $\Omega(1,1)$, de rapport $\frac{\sqrt{2}}{2}$ et d'angle $-\frac{\pi}{4}$ a pour forme complexe

$$z' = \frac{\sqrt{2}}{2}e^{-i\frac{\pi}{4}}z + i$$

Obtenir la forme complexe à partir de deux points

Soient M, M', N et N' quatres points du plan, d'affixes respectives z, z', w et w'. La similitude directe qui transforme M en M' et N en N' a pour forme complexe

$$z' = \alpha z + \beta$$

avec

$$\alpha = \frac{z' - w'}{z - w}$$

$$\beta = \frac{zw' - z'w}{z - w}$$

Exemples:

• La similitude directe qui transorme M(1,1) en M'(1,2) et N(0,2) en N'(0,3) a pour forme complexe

Car
$$\alpha = \frac{1+2i-3i}{1+i-2i} = \frac{1-i}{1-i} = 1$$
 et $\beta = \frac{(1+i)3i-(1+2i)2i}{1+i-2i} = \frac{1+i}{1-i} = i$.

• La similitude directe de centre $\Omega(-1,1)$ qui transforme M(1,0) en M'(2,1) a pour forme complexe

$$z' = \frac{6+3i}{5}z + \frac{2(2+i)}{5}$$

$$Car \ \alpha = \frac{-1+i-2-i}{-1+i-1} = \frac{3}{2-i} = \frac{6+3i}{5} \ et \ \beta = \frac{(-1+i)(2+i)-(-1+i)1}{-1+i-1} = \frac{2(2+i)}{5}.$$