Stage de Recherche Master 2

Formalismes à six foncteurs

David Kolar Sous la direction de Bernard Le Stum

- Ensembles simpliciaux, fibrations et animation
- ∞-Catégories Structures monoïdales symétriques
- Stabilité et ∞-catégories dérivées

2 Formalismes à six foncteurs abstraits

- CorrespondancesFormalismes à six foncteurs
- Formalismes a six foncteurs
- Construire un contexte géométrique
- Dualités
- Coïncidences

3 Faisceaux cohérents

- Schémas dérivés
- Faisceaux cohérents

Ensembles simpliciaux

On note Δ la catégorie des ensembles ordonnées finis et des applications croissantes.

Définition 1.1.1 (Ensemble simplicial)

Un *ensemble simplicial* X est un foncteur $\Delta^{op} \rightarrow \mathbf{Set}$.

Un *n-simplexe* de X est un élément de $X_n = X([n])$.

Un sommet de X est un 0-simplexe, une arête de X est un 1-simplexe.

On note Δ^n le simplexe standard, représenté par [n].

Définition 1.1.2 (Nerf)

Le foncteur nerf sur la catégorie Cat est défini par

$$\begin{array}{cccc} \Delta^{-} & : & \mathbf{Cat} & \to & \mathbf{sSet} \\ & \mathcal{C} & \mapsto & [n] \mapsto \mathrm{Hom}([n], \mathcal{C}) \end{array}$$

Définition 1.1.2 (Nerf)

Le foncteur nerf sur la catégorie Cat est défini par

$$\begin{array}{cccc} \Delta^{-} & : & \mathbf{Cat} & \to & \mathbf{sSet} \\ & \mathcal{C} & \mapsto & [n] \mapsto \mathrm{Hom}([n], \mathcal{C}) \end{array}$$

On a
$$\Delta^n \simeq \Delta^{[n]}$$
.

Définition 1.1.2 (Nerf)

Le foncteur nerf sur la catégorie Cat est défini par

$$\begin{array}{cccc} \Delta^{-} & : & \mathbf{Cat} & \to & \mathbf{sSet} \\ & \mathcal{C} & \mapsto & [n] \mapsto \mathrm{Hom}([n], \mathcal{C}) \end{array}$$

On a
$$\Delta^n \simeq \Delta^{[n]}$$
.

Définition 1.1.3 (Frontière)

La frontière d'une simplexe standard Δ^n est l'ensemble simplicial

$$\partial \Delta^n = \bigcup_{[m] \subsetneq [n]} \Delta^m$$

Définition 1.1.2 (Nerf)

Le foncteur nerf sur la catégorie Cat est défini par

$$\begin{array}{cccc} \Delta^{-} & : & \mathbf{Cat} & \to & \mathbf{sSet} \\ & \mathcal{C} & \mapsto & [n] \mapsto \mathrm{Hom}([n], \mathcal{C}) \end{array}$$

On a
$$\Delta^n \simeq \Delta^{[n]}$$
.

Définition 1.1.3 (Frontière)

La frontière d'une simplexe standard Δ^n est l'ensemble simplicial

$$\partial \Delta^n = \bigcup_{[m] \subsetneq [n]} \Delta^m$$

Définition 1.1.4 (Corne)

La k^e corne d'un simplexe standard Δ^n est l'ensemble simplicial

$$\Lambda^n_k = \bigcup_{\substack{[m] \subsetneq [n] \\ k \in [m]}} \Delta^m$$

Définition 1.1.5 (Fibration intérieure, à gauche, à droite, de Kan)

Pour un morphisme d'ensembles simpliciaux $f:K\to L$, on considère, pour $n\ge 1$, le problème de relèvement

$$\begin{array}{ccc}
\Lambda_k^n & \longrightarrow & K \\
\downarrow & & \downarrow f \\
\Delta^n & \longrightarrow & L
\end{array}$$

On dit que f est une fibration

Définition 1.1.5 (Fibration intérieure, à gauche, à droite, de Kan)

Pour un morphisme d'ensembles simpliciaux $f:K\to L$, on considère, pour $n\ge 1$, le problème de relèvement

$$\begin{array}{ccc} \Lambda^n_k & \longrightarrow & K \\ \downarrow & & \uparrow & \downarrow f \\ \Delta^n & \longrightarrow & L \end{array}$$

On dit que f est une fibration intérieure lorsque ce problème admet une solution pour 0 < k < n;

Définition 1.1.5 (Fibration intérieure, à gauche, à droite, de Kan)

Pour un morphisme d'ensembles simpliciaux $f:K\to L$, on considère, pour $n\ge 1$, le problème de relèvement

$$\begin{array}{ccc} \Lambda^n_k & \longrightarrow & K \\ \downarrow & & \downarrow f \\ \Delta^n & \longrightarrow & L \end{array}$$

Définition 1.1.5 (Fibration intérieure, à gauche, à droite, de Kan)

Pour un morphisme d'ensembles simpliciaux $f:K\to L$, on considère, pour $n\ge 1$, le problème de relèvement

$$\begin{array}{ccc}
\Lambda_k^n & \longrightarrow K \\
\downarrow & & \downarrow f \\
\Delta^n & \longrightarrow L
\end{array}$$

On dit que f est une fibration $intérieure \ lorsque \ ce problème admet une solution pour <math>0 < k < n;$ a $gauche \ lorsque \ ce problème admet une solution pour <math>0 \le k < n;$ a $droite \ lorsque \ ce problème admet une solution pour <math>0 < k \le n;$

Définition 1.1.5 (Fibration intérieure, à gauche, à droite, de Kan)

Pour un morphisme d'ensembles simpliciaux $f:K\to L$, on considère, pour $n\ge 1$, le problème de relèvement

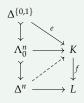
$$\begin{array}{ccc}
\Lambda_k^n & \longrightarrow & K \\
\downarrow & & & \downarrow f \\
\Delta^n & \longrightarrow & L
\end{array}$$

On dit que f est une fibration intérieure lorsque ce problème admet une solution pour 0 < k < n; à gauche lorsque ce problème admet une solution pour $0 \le k < n$; à droite lorsque ce problème admet une solution pour $0 < k \le n$;

de Kan lorsque ce problème admet une solution pour $0 \le k \le n$.

Définition 1.1.8 (Arête co-cartésienne)

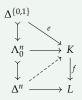
Soit $f:K\to L$ un morphisme d'ensembles simpliciaux. Une arête e de K est f-co-cartésienne lorsque, pour $n\ge 2$, le problème de relèvement



admet une solution.

Définition 1.1.8 (Arête co-cartésienne)

Soit $f:K\to L$ un morphisme d'ensembles simpliciaux. Une arête e de K est f-co-cartésienne lorsque, pour $n\ge 2$, le problème de relèvement



admet une solution.

Définition 1.1.9 (Fibration co-cartésienne)

Une fibration co-cartésienne est une fibration intérieure $f:K\to L$ telle que, pour toute arête $e:S\to T$ de L et tout relèvement \tilde{S} de S, il existe une arête f-co-cartésienne $\tilde{e}:\tilde{S}\to \tilde{T}$ relevant e.

Définition 1.1.11 (Composantes connexes)

L'ensemble des composantes connexes d'un ensemble simplicial K est l'ensemble $\pi_0(K)$ des classes d'équivalence de K_0 sous la relation

$$K_1 \xrightarrow{d_1 \times d_0} K_0 \times K_0$$

Définition 1.1.11 (Composantes connexes)

L'ensemble des composantes connexes d'un ensemble simplicial K est l'ensemble $\pi_0(K)$ des classes d'équivalence de K_0 sous la relation

$$K_1 \xrightarrow{d_1 \times d_0} K_0 \times K_0$$

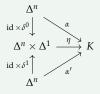
Définition 1.1.11 (Lacet)

Pour $x \in K_0$, un n-lacet en x est un morphisme $\alpha: \Delta^n \to K$ faisant commuter le diagramme suivant

$$\begin{array}{ccc} \partial\Delta^n & \longrightarrow & \Delta^0 \\ \downarrow & & \downarrow^x \\ \Delta^n & \longrightarrow & K \end{array}$$

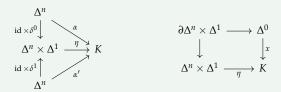
Définition 1.1.11 (Homotopie

Deux n-lacets α,α' en x sont homotopes lorsqu'il existe une homotopie simpliciale η faisant commuter les diagrammes



Définition 1.1.11 (Homotopie

Deux n-lacets α,α' en x sont homotopes lorsqu'il existe une homotopie simpliciale η faisant commuter les diagrammes



Définition 1.1.11 (Groupe d'homotopie)

Le n^e groupe¹ d'homotopie d'un ensemble simplicial K en x est l'ensemble $\pi_n(K,x)$ des classes d'équivalence de n-lacets sous la relation d'homotopie.

Définition 1.1.14 (Équivalence faible)

Un morphisme d'ensembles simpliciaux $f:K\to L$ est une équivalence faible lorsqu'il induit des isomorphismes entre les ensembles de composantes connexes et entre chaque groupes d'homotopie.

Définition 1.1.14 (Équivalence faible)

Un morphisme d'ensembles simpliciaux $f:K\to L$ est une équivalence faible lorsqu'il induit des isomorphismes entre les ensembles de composantes connexes et entre chaque groupes d'homotopie.

Définition 1.1.15 (Ensemble animé)

La catégorie des ensembles animés est la localisation de s**Set** aux équivalences faibles.

Définition 1.1.14 (Équivalence faible)

Un morphisme d'ensembles simpliciaux $f:K\to L$ est une *équivalence faible* lorsqu'il induit des isomorphismes entre les ensembles de composantes connexes et entre chaque groupes d'homotopie.

Définition 1.1.15 (Ensemble animé)

La catégorie des ensembles animés est la localisation de sSet aux équivalences faibles.

On notera **Ani** cette ∞-catégorie.

Définition 1.2.1 (∞-Catégorie

Une ∞ -catégorie est un ensemble simplicial $\mathcal C$ tel que $\mathcal C \to *$ est une fibration intérieure.

Définition 1.2.1 (∞-Catégorie)

Une ∞ -catégorie est un ensemble simplicial $\mathcal C$ tel que $\mathcal C \to *$ est une fibration intérieure.

Remarque

De manière équivalente, une ∞ -catégorie est un ensemble simplicial $\mathcal C$ tel que la restriction

$$\mathsf{Hom}_{s\mathbf{Set}}(\Delta^2,\mathcal{C}) \to \mathsf{Hom}_{s\mathbf{Set}}(\Lambda^2_1,\mathcal{C})$$

est une fibration triviale.

Définition 1.2.2 (Foncteur

Un foncteur entre deux ∞ -catégories est un morphisme d'ensembles simpliciaux.

Définition 1.2.2 (Foncteur)

Un foncteur entre deux ∞-catégories est un morphisme d'ensembles simpliciaux.

Définition 1.2.3 (Transformation naturelle)

Une *transformation naturelle* entre deux foncteurs $F,G:\mathcal{C}\to\mathcal{C}'$ est un morphisme d'ensembles simpliciaux $\eta:\mathcal{C}\times\Delta^1\to\mathcal{C}'$ tel que le diagramme suivant commute

Soit *K* un ensemble simplicial.

Les foncteurs $K \to \mathcal{C}$ forment une ∞ -catégorie, notée Fun (K, \mathcal{C}) .

 $\operatorname{Fun}(K,\mathcal{C})$ admet un complexe de Kan maximal, noté $\operatorname{Fun}(K,\mathcal{C})^{\simeq}$.

On note \textbf{Cat}_{∞} l' $\infty\text{-catégorie}$ dont les objets sont les $\infty\text{-catégories}$ et

$$\text{Hom}_{\text{Cat}_{\infty}}(\mathcal{C},\mathcal{C}') = \text{Fun}(\mathcal{C},\mathcal{C}')^{\simeq}$$

Définition 1.2.9 (Catégorie d'homotopie)

La catégorie d'homotopie h $\mathcal C$ d'une ∞ -catégorie $\mathcal C$ est l'image de $\mathcal C$ par l'adjoint du foncteur de nerf.

Remarque

 $h\mathcal{C} \text{ a les mêmes objets que } \mathcal{C}\text{, mais } Hom_{h\mathcal{C}}(X,Y) = \pi_0 Hom_{\mathcal{C}}(X,Y).$

Définition 1.2.9 (Catégorie d'homotopie)

La catégorie d'homotopie h $\mathcal C$ d'une ∞ -catégorie $\mathcal C$ est l'image de $\mathcal C$ par l'adjoint du foncteur de nerf.

Remarque

 $h\mathcal{C} \text{ a les mêmes objets que } \mathcal{C}\text{, mais } Hom_{h\mathcal{C}}(X,Y) = \pi_0 Hom_{\mathcal{C}}(X,Y).$

Définition 1.2.10 (Équivalence)

Un morphisme dans une ∞ -catégorie $\mathcal C$ est une *équivalence* lorsque son image dans h $\mathcal C$ est un isomorphisme.

Définition 1.2.12 (Catégorie des préfaisceaux

L'∞-catégorie des préfaisceaux d'animas sur une ∞-catégorie C est

$$\mathcal{P}(\mathcal{C}) := \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{\mathbf{Ani}})$$

Définition 1.2.12 (Catégorie des préfaisceaux)

L'∞-catégorie des préfaisceaux d'animas sur une ∞-catégorie C est

$$\mathcal{P}(\mathcal{C}) := Fun(\mathcal{C}^{op}, \textbf{Ani})$$

Lemme 1.2.13 (Lemme de Yoneda)

Pour une ∞-catégorie C, le plongement de Yoneda

$$\begin{array}{cccc} \mbox{\sharp} & : & \mbox{\mathcal{C}} & \rightarrow & \mbox{$\mathcal{P}(\mathcal{C})$} \\ & & \mbox{X} & \mapsto & \mbox{$[Y \mapsto \operatorname{Hom}(Y,X)]$} \end{array}$$

est pleinement fidèle.

Définition 1.2.12 (Catégorie des préfaisceaux)

L'∞-catégorie des préfaisceaux d'animas sur une ∞-catégorie C est

$$\mathcal{P}(\mathcal{C}) := \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{\mathbf{Ani}})$$

Lemme 1.2.13 (Lemme de Yoneda)

Pour une ∞-catégorie C, le plongement de Yoneda

$$\begin{array}{cccc} \mathcal{L} & : & \mathcal{C} & \rightarrow & \mathcal{P}(\mathcal{C}) \\ & X & \mapsto & [Y \mapsto \operatorname{Hom}(Y, X)] \end{array}$$

est pleinement fidèle.

Théorème 1.2.14 (Théorème de Yoneda)

Soient $\mathcal C$ une ∞ -catégorie et $F:\mathcal C\to \mathbf{Ani}$ un foncteur. Alors le foncteur composé

$$\mathcal{C}^{op} \xrightarrow{\mbox{\sharp}} \mathcal{P}(\mathcal{C})^{op} \xrightarrow{Hom(-,F)} \textbf{Ani}$$

est équivalent à *F*.

Théorème 1.2.15 (Lissage-Délissage)

Soit ${\mathcal S}$ une $\infty\text{-cat\'egorie}.$ Il y a une \'equivalence d' $\infty\text{-cat\'egories}$

 $\mathsf{St}:\mathsf{cocart}(\mathcal{S}) \leftrightarrows \mathsf{Fun}(\mathcal{S},\textbf{Cat}_\infty):\mathsf{Un}$

∞-Catégories: Limites et colimites

∞-Catégories: Limites et colimites

Définition 1.2.16 (Limite)

Soit $F:K\to\mathcal{C}$ un diagramme. Un objet $Y\in\mathcal{C}$ est une *limite* de F lorsqu'il existe une transformation naturelle $\underline{Y}_K\to F$ induisant, pour tout $X\in\mathcal{C}$, une équivalence d'animas

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \simeq \operatorname{Hom}_{\operatorname{Fun}(K,\mathcal{C})}(\underline{X}_K,F)$$

∞-Catégories: Limites et colimites

Définition 1.2.16 (Limite)

Soit $F: K \to \mathcal{C}$ un diagramme. Un objet $Y \in \mathcal{C}$ est une *limite* de F lorsqu'il existe une transformation naturelle $\underline{Y}_K \to F$ induisant, pour tout $X \in \mathcal{C}$, une équivalence d'animas

$$\operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,Y) \simeq \operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Fun}}(K,\mathcal{C})}(\underline{X}_K,F)$$

Définition 1.2.16 (Colimite)

Duallement, un objet $X \in \mathcal{C}$ est une *colimite* de F lorsqu'il existe une transformation naturelle $F \to \underline{X}_K$ induisant, pour tout $Y \in \mathcal{C}$, une équivalence d'animas

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \simeq \operatorname{Hom}_{\operatorname{Fun}(K,\mathcal{C})}(F,\underline{Y}_K)$$

Définition 1.2.17 (Objet initial, final, nul)

Un objet est

final lorsqu'il est limite d'un diagramme vide;

Définition 1.2.17 (Objet initial, final, nul)

Un objet est

final lorsqu'il est limite d'un diagramme vide; initial lorsqu'il est colimite d'un diagramme vide;

Définition 1.2.17 (Objet initial, final, nul)

Un objet est

final lorsqu'il est limite d'un diagramme vide; initial lorsqu'il est colimite d'un diagramme vide; nul lorsqu'il est initial et final.

Définition 1.2.17 (Objet initial, final, nul)

Un objet est

final lorsqu'il est limite d'un diagramme vide; initial lorsqu'il est colimite d'un diagramme vide; nul lorsqu'il est initial et final.

Définition 1.2.17 (Objet initial, final, nul)

Un objet est

final lorsqu'il est limite d'un diagramme vide; initial lorsqu'il est colimite d'un diagramme vide; nul lorsqu'il est initial et final.

Une ∞-catégorie est dite *pointée* lorsqu'elle admet un objet nul.

Définition 1.2.17 (Objet initial, final, nul)

Un objet est

final lorsqu'il est limite d'un diagramme vide; initial lorsqu'il est colimite d'un diagramme vide; nul lorsqu'il est initial et final.

Une ∞-catégorie est dite *pointée* lorsqu'elle admet un objet nul.

On note Ø l'objet initial, * l'objet final et 0 l'objet nul, lorsqu'ils existent.

Définition 1.2.18 (Produit, co-produit)

Un *produit* est une limite d'un diagramme discret. Un *co-produit* est une colimite d'un diagramme discret.

Définition 1.2.18 (Produit, co-produit)

Un *produit* est une limite d'un diagramme discret. Un *co-produit* est une colimite d'un diagramme discret.

On note
$$X \times Y$$
 (ou $\prod_{i \in I} X_i$) un produit et $X + Y$ (ou $\prod_{i \in I} X_i$) un co-produit.

Définition 1.2.18 (Produit, co-produit)

Un *produit* est une limite d'un diagramme discret. Un *co-produit* est une colimite d'un diagramme discret.

On note
$$X \times Y$$
 (ou $\prod_{i \in I} X_i$) un produit et $X + Y$ (ou $\coprod_{i \in I} X_i$) un co-produit.

Définition 1.2.19 (Produit fibré, somme amalgamée)

Un *produit fibré* est une limite d'un diagramme de forme $\bullet \to \bullet \leftarrow \bullet$.

Une somme amalgamée est une colimite d'un diagramme de forme $\bullet \leftarrow \bullet \rightarrow \bullet$.

Définition 1.2.18 (Produit, co-produit)

Un *produit* est une limite d'un diagramme discret. Un *co-produit* est une colimite d'un diagramme discret.

On note
$$X \times Y$$
 (ou $\prod_{i \in I} X_i$) un produit et $X + Y$ (ou $\coprod_{i \in I} X_i$) un co-produit.

Définition 1.2.19 (Produit fibré, somme amalgamée)

Un *produit fibré* est une limite d'un diagramme de forme $\bullet \to \bullet \leftarrow \bullet$. Une *somme amalgamée* est une colimite d'un diagramme de forme $\bullet \leftarrow \bullet \to \bullet$.

On note $X \underset{Z}{\times} Y$ un produit fibré et $X \underset{Z}{+} Y$ une somme amalgamée.

Théorème 1.2.24

Une ∞ -catégorie $\mathcal C$ admet toutes les colimites finies si et seulement si elle admet toutes les sommes amalgamées et un objet initial.

Théorème 1.2.24

Une ∞ -catégorie $\mathcal C$ admet toutes les colimites finies si et seulement si elle admet toutes les sommes amalgamées et un objet initial.

Théorème 1.2.26

Soit *X* un objet d'une ∞-catégorie *C*. Alors le foncteur

$$Y \mapsto \operatorname{Hom}_{\mathcal{C}}(X,Y)$$

préserve les limites qui existent dans $\mathcal{C}.$

∞-Catégories: Adjonctions

Définition 1.2.27 (Adjoint)

Un foncteur $F:\mathcal{C}\to\mathcal{C}'$ entre ∞ -catégories est *adjoint* à un foncteur $G:\mathcal{C}'\to\mathcal{C}$ lorsqu'il existe une transformation naturelle $\epsilon: \mathrm{id}_{\mathcal{C}'}\to G\circ F$ induisant, pour tout $X\in\mathcal{C}$ et $Y\in\mathcal{C}'$, une équivalence d'animas

$$\operatorname{Hom}_{\mathcal{C}'}(FX,Y) \simeq \operatorname{Hom}_{\mathcal{C}}(X,GY)$$

∞-Catégories: Adjonctions

Définition 1.2.27 (Adjoint)

Un foncteur $F:\mathcal{C}\to\mathcal{C}'$ entre ∞ -catégories est *adjoint* à un foncteur $G:\mathcal{C}'\to\mathcal{C}$ lorsqu'il existe une transformation naturelle $\varepsilon:\mathrm{id}_{\mathcal{C}'}\to G\circ F$ induisant, pour tout $X\in\mathcal{C}$ et $Y\in\mathcal{C}'$, une équivalence d'animas

$$\operatorname{Hom}_{\mathcal{C}'}(FX,Y) \simeq \operatorname{Hom}_{\mathcal{C}}(X,GY)$$

Proposition 1.2.29

Soient $F:\mathcal{C}\to\mathcal{C}'$ un foncteur admettant un co-adjoint G. Alors F préserve toutes les colimites.

∞-Catégories: Adjonctions

Définition 1.2.27 (Adjoint)

Un foncteur $F:\mathcal{C}\to\mathcal{C}'$ entre ∞ -catégories est *adjoint* à un foncteur $G:\mathcal{C}'\to\mathcal{C}$ lorsqu'il existe une transformation naturelle $\epsilon: \mathrm{id}_{\mathcal{C}'}\to G\circ F$ induisant, pour tout $X\in\mathcal{C}$ et $Y\in\mathcal{C}'$, une équivalence d'animas

$$\operatorname{Hom}_{\mathcal{C}'}(FX,Y) \simeq \operatorname{Hom}_{\mathcal{C}}(X,GY)$$

Proposition 1.2.29

Soient $F : \mathcal{C} \to \mathcal{C}'$ un foncteur admettant un co-adjoint G. Alors F préserve toutes les colimites.

Duallement, *G* préserve toutes les limites.

Définition 1.2.31 (Ensemble simplicial filtré

Un ensemble simplicial *K* est *filtré* lorsque toute colimite de forme *K* dans **Ani** existe et commute avec toutes les limites finies.

Définition 1.2.31 (Ensemble simplicial filtré)

Un ensemble simplicial *K* est *filtré* lorsque toute colimite de forme *K* dans **Ani** existe et commute avec toutes les limites finies.

Définition 1.2.32

Soit $\mathcal C$ une petite ∞ -catégorie. Ind $(\mathcal C)$ est l' ∞ -catégorie ayant pour objets les petits diagrammes filtrés $X:D_X\to \mathcal C$ et comme animas de morphismes

$$\operatorname{Hom}_{\operatorname{Ind}(\mathcal{C})}(X,Y) = \lim_{d \in D_X} \operatornamewithlimits{colim}_{d' \in D_Y} \operatorname{Hom}_{\mathcal{C}}(X(d),Y(d'))$$

Définition 1.2.33 (∞-Catégorie accessible

Une ∞ -catégorie est *accessible* lorsqu'il existe une petite ∞ -catégorie \mathcal{C}' telle que

$$\mathcal{C} \simeq Ind(\mathcal{C}')$$

Définition 1.2.33 (∞-Catégorie accessible

Une ∞ -catégorie est *accessible* lorsqu'il existe une petite ∞ -catégorie \mathcal{C}' telle que

$$\mathcal{C} \simeq Ind(\mathcal{C}')$$

Définition 1.2.34 (∞-Catégorie présentable)

Une ∞ -catégorie est *présentable* lorsqu'elle est accessible et qu'elle admet toutes les petites colimites.

Définition 1.2.33 (∞-Catégorie accessible

Une ∞ -catégorie est *accessible* lorsqu'il existe une petite ∞ -catégorie \mathcal{C}' telle que

$$\mathcal{C} \simeq Ind(\mathcal{C}')$$

Définition 1.2.34 (∞-Catégorie présentable)

Une ∞ -catégorie est *présentable* lorsqu'elle est accessible et qu'elle admet toutes les petites colimites.

Proposition 1.2.35

Une ∞ -catégorie est présentable si et seulement si elle est localement petite et qu'elle est engendrée par petites colimites d'un petit ensemble d'objets.

On note Fin_* la catégorie des ensembles finis $\langle n \rangle = \{1,\ldots,n\}$ et des applications partielles, et $\rho_i^n:\langle n \rangle \rightharpoonup \langle 1 \rangle$ l'unique morphisme défini uniquement en i.

On note Fin_* la catégorie des ensembles finis $\langle n \rangle = \{1, \dots, n\}$ et des applications partielles, et $\rho_i^n : \langle n \rangle \rightharpoonup \langle 1 \rangle$ l'unique morphisme défini uniquement en i.

Définition 1.3.1 (∞-Catégorie monoïdale symétrique)

Soit $\mathcal C$ une ∞ -catégorie. Une structure mono"idale sym'etrique sur $\mathcal C$ est une fibration co-cartésienne

$$\mathcal{C}^{\otimes} \to \Delta^{\textbf{Fin}_*}$$

telle que $\mathcal{C}\simeq\mathcal{C}_{\langle 1\rangle}^\otimes$ et les morphismes ρ_i^n induisent des foncteurs $\mathcal{C}_{\langle n\rangle}^\otimes\to\mathcal{C}$ qui déterminent une équivalence

$$\mathcal{C}_{\langle n \rangle}^{\otimes} \simeq \mathcal{C}^n$$

On note Fin_* la catégorie des ensembles finis $\langle n \rangle = \{1,\ldots,n\}$ et des applications partielles, et $\rho_i^n:\langle n \rangle \rightharpoonup \langle 1 \rangle$ l'unique morphisme défini uniquement en i.

Définition 1.3.1 (∞-Catégorie monoïdale symétrique

Soit $\mathcal C$ une ∞ -catégorie. Une structure mono"idale sym'etrique sur $\mathcal C$ est une fibration co-cartésienne

$$\mathcal{C}^{\otimes} \to \Delta^{\textbf{Fin}_*}$$

telle que $\mathcal{C}\simeq\mathcal{C}_{\langle 1\rangle}^\otimes$ et les morphismes ρ_i^n induisent des foncteurs $\mathcal{C}_{\langle n\rangle}^\otimes\to\mathcal{C}$ qui déterminent une équivalence

$$\mathcal{C}_{\langle n \rangle}^{\otimes} \simeq \mathcal{C}^n$$

Remarque

Par le théorème de Lissage-Délissage, une structure monoïdale symétrique sur $\mathcal C$ peut se comprendre comme un foncteur $\Delta^{\operatorname{Fin}_*} \to \operatorname{Cat}_\infty$ par lequel $\langle 1 \rangle$ a pour image $\mathcal C$.

Définition 1.3.4 (∞-Catégorie monoïdale symétrique fermée)

Une ∞-catégorie monoïdale symétrique C est dite *fermée* lorsque, pour tout objet $Y \in C$, le foncteur $- \otimes Y$ admet un co-adjoint $\mathcal{H}om(Y, -)$.

Définition 1.3.4 (∞-Catégorie monoïdale symétrique fermée)

Une ∞ -catégorie monoïdale symétrique $\mathcal C$ est dite *fermée* lorsque, pour tout objet $Y \in \mathcal C$, le foncteur $-\otimes Y$ admet un co-adjoint $\mathcal Hom(Y,-)$.

Définition (Structure monoïdale symétrique cartésienne)

Une structure monoïdale symétrique sur une ∞ -catégorie $\mathcal C$ est dite *cartésienne* lorsque $\mathbf 1_{\mathcal C}$ est final et que, pour deux objets X et Y de $\mathcal C$, $X\otimes Y\simeq X\times Y$.

Définition 1.3.4 (∞-Catégorie monoïdale symétrique fermée)

Une ∞ -catégorie monoïdale symétrique $\mathcal C$ est dite *fermée* lorsque, pour tout objet $Y \in \mathcal C$, le foncteur $-\otimes Y$ admet un co-adjoint $\mathcal Hom(Y,-)$.

Définition (Structure monoïdale symétrique cartésienne)

Une structure monoïdale symétrique sur une ∞ -catégorie $\mathcal C$ est dite *cartésienne* lorsque $\mathbf 1_{\mathcal C}$ est final et que, pour deux objets X et Y de $\mathcal C$, $X\otimes Y\simeq X\times Y$.

Remarque

Une telle structure est essentiellement unique.

Définition 1.3.3 (Foncteur monoïdal symétrique)

Soient $\mathcal C$ et $\mathcal C'$ deux ∞ -catégories admettant des structures monoïdales symétriques, définies par des fibrations

$$\mathcal{C}^{\otimes},\mathcal{C}'^{\otimes} \to \Delta^{Fin_*}$$

Un foncteur monoïdal symétrique (faible) est un foncteur $\mathcal{C}^{\otimes} \to \mathcal{C}'^{\otimes}$ au-dessus de \mathbf{Fin}_* préservant les relèvements co-cartésiens des ρ_i^n .

Définition 1.3.3 (Foncteur monoïdal symétrique)

Soient $\mathcal C$ et $\mathcal C'$ deux ∞ -catégories admettant des structures monoïdales symétriques, définies par des fibrations

$$\mathcal{C}^{\otimes}$$
, $\mathcal{C}'^{\otimes} \to \Delta^{\text{Fin}_*}$

Un foncteur monoïdal symétrique (faible) est un foncteur $\mathcal{C}^{\otimes} \to \mathcal{C}'^{\otimes}$ au-dessus de \mathbf{Fin}_* préservant les relèvements co-cartésiens des ρ_i^n .

Définition 1.3.3 (Foncteur monoïdal symétrique fort)

Un foncteur monoïdal symétrique est dit *fort* lorsqu'il préserve tous les relèvements co-cartésiens.

Stabilité

Définition 1.4.1 (Triangle

Soit $\mathcal C$ une ∞ -catégorie pointée. Un triangle de $\mathcal C$ est un diagramme commutatif

Stabilité

Définition 1.4.1 (Triangle

Soit $\mathcal C$ une ∞ -catégorie pointée. Un *triangle* de $\mathcal C$ est un diagramme commutatif

$$\begin{array}{ccc} X & \longrightarrow & Y \\ \downarrow & & \downarrow \\ 0 & \longrightarrow & Z \end{array}$$

On note plus souvent $X \to Y \to Z$ un triangle.

Parenthèse: diagramme "commutatif"

$$\begin{array}{ccc}
X & \longrightarrow & Y \\
\downarrow & & \downarrow \\
0 & \longrightarrow & Z
\end{array}$$

Parenthèse: diagramme "commutatif"

Parenthèse: diagramme "commutatif"

Stabilité

Définition 1.4.1 (Triangle)

Soit \mathcal{C} une ∞ -catégorie pointée. Un *triangle* de \mathcal{C} est un diagramme commutatif

$$\begin{array}{ccc} X & \longrightarrow & Y \\ \downarrow & & \downarrow \\ 0 & \longrightarrow & Z \end{array}$$

On note plus souvent $X \to Y \to Z$ un triangle.

27

Stabilité

Définition 1.4.1 (Triangle)

Soit $\mathcal C$ une ∞ -catégorie pointée. Un *triangle* de $\mathcal C$ est un diagramme commutatif

$$\begin{array}{ccc} X & \longrightarrow & Y \\ \downarrow & & \downarrow \\ 0 & \longrightarrow & Z \end{array}$$

On note plus souvent $X \to Y \to Z$ un triangle.

Définition 1.4.2 (Suite fibrée, co-fibrée)

Un triangle $X \xrightarrow{f} Y \xrightarrow{g} Z$ est une *suite* fibrée lorsque c'est un produit fibré;

co-fibrée lorsque c'est une somme amalgamée.

On dit alors que X est la *fibre* de g, et que Z est la *co-fibre* de f.

27

Définition 1.4.1 (Triangle)

Soit \mathcal{C} une ∞ -catégorie pointée. Un *triangle* de \mathcal{C} est un diagramme commutatif

On note plus souvent $X \to Y \to Z$ un triangle.

Définition 1.4.2 (Suite fibrée, co-fibrée)

Un triangle $X \xrightarrow{f} Y \xrightarrow{g} Z$ est une *suite* fibrée lorsque c'est un produit fibré;

co-fibrée lorsque c'est une somme amalgamée.

On dit alors que X est la *fibre* de *g*, et que Z est la *co-fibre* de *f* .

On note fib(g) la fibre d'un morphisme, et cofib(f) sa co-fibre.

27

Définition 1.4.3 (∞-Catégorie stable)

Une ∞-catégorie pointée est stable lorsque

- Tout morphisme admet une fibre et une co-fibre;
- Un triangle est une suite fibrée si et seulement si c'est une suite co-fibrée.

Définition 1.4.3 (∞-Catégorie stable)

Une ∞-catégorie pointée est stable lorsque

- Tout morphisme admet une fibre et une co-fibre;
- Un triangle est une suite fibrée si et seulement si c'est une suite co-fibrée.

Remarque

La stabilité est une propriété auto-duale.

Définition 1.4.3 (∞-Catégorie stable)

Une ∞-catégorie pointée est stable lorsque

- Tout morphisme admet une fibre et une co-fibre;
- Un triangle est une suite fibrée si et seulement si c'est une suite co-fibrée.

Remarque

La stabilité est une propriété auto-duale.

Proposition 1.4.4

Une ∞-catégorie pointée C est stable si et seulement si

- Elle admet toutes les limites et colimites finies;
- Un carré est un produit fibré si et seulement si c'est une somme amalgamée.

Théorème 1.4.11 (Correspondance de Dold-Kan)

Le foncteur

$$\begin{array}{ccc} \mathbf{s}\mathbf{A}\mathbf{b} & \to & \mathrm{Ch}_+(\mathbf{A}\mathbf{b}) \\ A_{\bullet} & \mapsto & \left(\bigcap_{i=0}^{n-1} \ker(d_i)\right)_n \end{array}$$

induit une équivalence de catégories.

Théorème 1.4.11 (Correspondance de Dold-Kan)

Le foncteur

$$sAb \rightarrow Ch_{+}(Ab)$$

$$A_{\bullet} \mapsto \left(\bigcap_{i=0}^{n-1} \ker(d_{i})\right)_{n}$$

induit une équivalence de catégories.

Soit A une catégorie abélienne. En notant, pour A et B dans $Ch_+(A)$,

$$\operatorname{Hom}(A,B)_n = \prod_i \operatorname{Hom}_{\operatorname{Ch}_+(A)}(A_i,B_{i+n})$$

on fait de $\text{Ch}_+(\mathcal{A})$ une catégorie enrichie en complexes de groupes abéliens.

Définition 1.4.12 (∞-Catégorie dérivée

Soit $\mathcal A$ une catégorie abélienne avec assez de projectifs. L' ∞ -catégorie dérivée $\mathcal D(\mathcal A)$ de $\mathcal A$ est

$$\mathcal{D}(\mathcal{A}) = N(Ch_+(\mathcal{A}_{proj}))$$

Définition 1.4.12 (∞-Catégorie dérivée)

Soit $\mathcal A$ une catégorie abélienne avec assez de projectifs. L' ∞ -catégorie dérivée $\mathcal D(\mathcal A)$ de $\mathcal A$ est

$$\mathcal{D}(\mathcal{A}) = N(Ch_+(\mathcal{A}_{proj}))$$

Proposition 1.4.13

L'∞-catégorie dérivée d'une catégorie abélienne est stable.

Formalismes à six foncteurs abstraits

Définition 2.1.1 (Contexte géométrique)

Un contexte géométrique est la donnée d'une ∞ -catégorie $\mathcal C$ et d'une classe de morphismes E de $\mathcal C$ tels que

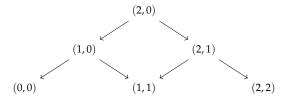
- C admet toutes les limites finies;
- E contient toutes les équivalences et est stable par composition et changement de base.

Pour $n \geq 0$, on note $(\Delta^n)_+^2$ le sous-ensemble simplicial de $(\Delta^n)^{\mathrm{op}} \times \Delta^n$ engendré par

$$\left\{(i,j)\in \llbracket 0,n\rrbracket^2\mid i\geq j\right\}$$

Pour $n \geq 0$, on note $(\Delta^n)_+^2$ le sous-ensemble simplicial de $(\Delta^n)^{\mathrm{op}} \times \Delta^n$ engendré par

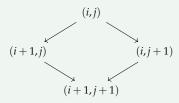
$$\left\{(i,j)\in [0,n]^2\mid i\geq j\right\}$$



Définition 2.1.2 (Correspondance)

Soit (C, E) un contexte géométrique. L'ensemble simplicial des *correspondances* Corr(C, E) a pour *n*-simplexes les morphismes d'ensembles simpliciaux $(\Delta^n)_+^2 \to C$ tels que

- Tout morphisme induit par $(i,j) \rightarrow (i,j+k)$, avec $k \in [0,i-j]$ est dans E;
- Tout carré induit par

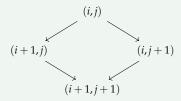


est cartésien.

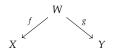
Définition 2.1.2 (Correspondance)

Soit (C, E) un contexte géométrique. L'ensemble simplicial des *correspondances* Corr(C, E) a pour *n*-simplexes les morphismes d'ensembles simpliciaux $(\Delta^n)_+^2 \to C$ tels que

- Tout morphisme induit par $(i,j) \rightarrow (i,j+k)$, avec $k \in [0,i-j]$ est dans E;
- Tout carré induit par



est cartésien.



Définition 2.2.1 (Formalisme à trois foncteurs)

Un formalisme à trois foncteurs sur $\mathcal C$ est un foncteur monoïdal symétrique

$$\mathcal{D}: Corr(\mathcal{C}, E) \to cMon(\mathbf{Cat}_{\infty})$$

Définition 2.2.1 (Formalisme à trois foncteurs)

Un formalisme à trois foncteurs sur $\mathcal C$ est un foncteur monoïdal symétrique

$$\mathcal{D}: Corr(\mathcal{C}, E) \to cMon(\mathbf{Cat}_{\infty})$$

$$X \mapsto \mathcal{D}(X)$$

Définition 2.2.1 (Formalisme à trois foncteurs)

Un formalisme à trois foncteurs sur $\mathcal C$ est un foncteur monoïdal symétrique

$$\mathcal{D}: Corr(\mathcal{C}, E) \to cMon(\mathbf{Cat}_{\infty})$$

$$X \mapsto \mathcal{D}(X) \\ - \otimes -$$

Définition 2.2.1 (Formalisme à trois foncteurs)

Un formalisme à trois foncteurs sur C est un foncteur monoïdal symétrique

$$\mathcal{D}: \operatorname{Corr}(\mathcal{C}, E) \to \operatorname{cMon}(\mathbf{Cat}_{\infty})$$

Définition 2.2.1 (Formalisme à trois foncteurs)

Un formalisme à trois foncteurs sur C est un foncteur monoïdal symétrique

$$\mathcal{D}: Corr(\mathcal{C}, E) \to cMon(\textbf{Cat}_{\infty})$$

$$X \qquad \mapsto \qquad \mathcal{D}(X) \\ - \otimes -$$

$$X \qquad \mapsto \qquad f^* : \mathcal{D}(Y) \to \mathcal{D}(X)$$

$$X \qquad \qquad Y \qquad \mapsto \qquad f_! : \mathcal{D}(X) \to \mathcal{D}(Y)$$

$$X \qquad \qquad Y \qquad \mapsto \qquad f_! : \mathcal{D}(X) \to \mathcal{D}(Y)$$

Définition 2.2.1 (Formalisme à trois foncteurs)

Un formalisme à trois foncteurs sur $\mathcal C$ est un foncteur monoïdal symétrique

$$\mathcal{D}: \operatorname{Corr}(\mathcal{C}, E) \to \operatorname{cMon}(\mathbf{Cat}_{\infty})$$

$$X \qquad \mapsto \qquad \mathcal{D}(X) \\ - \otimes -$$

$$X \qquad \mapsto \qquad f^* : \mathcal{D}(Y) \to \mathcal{D}(X)$$

$$X \qquad \mapsto \qquad f_! : \mathcal{D}(X) \to \mathcal{D}(Y)$$

$$X \qquad \qquad Y$$

Définition 2.2.2 (Formalisme à six foncteurs)

Soit (\mathcal{C}, E) un contexte géométrique. Un *formalisme* à six *foncteurs* sur \mathcal{C} est un formalisme à trois foncteurs \mathcal{D} tel que les ∞ -catégories monoïdales symétriques $\mathcal{D}(X)$ sont toujours fermées et les foncteurs f^* et $f_!$ admettent toujours des co-adjoints.

Soit $\mathcal{D}: Corr(\mathcal{C}, E) \to cMon(\textbf{Cat}_{\infty})$ un formalisme à trois foncteurs.

Soit $\mathcal{D}: Corr(\mathcal{C}, E) \to cMon(\textbf{Cat}_{\infty})$ un formalisme à trois foncteurs.

Proposition 2.2.3 (Changement de base)

Pour tout carré cartésien de ${\cal C}$

$$X' \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \xrightarrow{g} Y$$

 $\operatorname{avec} f \in E$, on a une équivalence

$$g^*f_! \simeq f_!'g'^*$$

de foncteurs $\mathcal{D}(X) \to \mathcal{D}(Y')$.

Soit $\mathcal{D}: Corr(\mathcal{C}, E) \to cMon(\textbf{Cat}_{\infty})$ un formalisme à trois foncteurs.

Proposition 2.2.3 (Changement de base)

Pour tout carré cartésien de $\mathcal C$

$$\begin{array}{ccc} X' & \stackrel{g'}{\longrightarrow} & X \\ f' \downarrow & & \downarrow f \\ Y' & \stackrel{g}{\longrightarrow} & Y \end{array}$$

 $avec f \in E$, on a une équivalence

$$g^*f_! \simeq f_!'g'^*$$

de foncteurs $\mathcal{D}(X) \to \mathcal{D}(Y')$.

Proposition 2.2.4 (Formule de projection)

Soient $f: X \to Y$ un morphisme de $E, A \in \mathcal{D}(X)$ et $B \in \mathcal{D}(Y)$. Alors

$$f_!(A) \otimes B \simeq f_!(A \otimes f^*B)$$

Construire un contexte géométrique

Définition 2.3.1 (Décomposition de Grothendieck-Wirthmüller)

Une décomposition de Grothendieck-Wirthmüller de E est une paire de parties (I,P) de E telle que

- Tout morphisme $f \in E$ peut s'écrire $f \simeq i \circ p$ avec $i \in I$ et $p \in P$.
- Tout morphisme $f \in I \cap P$ est n-tronqué pour $n \ge -2$.
- *I* et *P* sont stables par changement de base et contiennent les identités.
- Pour $f \in I$ (resp. P), $f \circ g \in I$ (resp. P) si et seulement si $g \in I$ (resp. P).

Dualités: hypothèses

On fixe donc pour cette section un formalisme à six foncteurs

$$\mathcal{D}: Corr(\mathcal{C}, E) \to cMon(\textbf{Cat}_{\infty})$$

et un morphisme $f:X \to Y$ dans E. On note $\Delta_f:X \to X \underset{Y}{\times} X$ la diagonale.

Dualités: hypothèses

On fixe donc pour cette section un formalisme à six foncteurs

$$\mathcal{D}: \operatorname{Corr}(\mathcal{C}, E) \to \operatorname{cMon}(\mathbf{Cat}_{\infty})$$

et un morphisme $f:X \to Y$ dans E. On note $\Delta_f:X \to X \underset{Y}{\times} X$ la diagonale.

• En remplacant C par $C_{/Y}$, on peut supposer que Y est final;

Dualités: hypothèses

On fixe donc pour cette section un formalisme à six foncteurs

$$\mathcal{D}: \operatorname{Corr}(\mathcal{C}, E) \to \operatorname{cMon}(\mathbf{Cat}_{\infty})$$

et un morphisme $f:X \to Y$ dans E. On note $\Delta_f:X \to X \underset{Y}{\times} X$ la diagonale.

- En remplacant C par $C_{/Y}$, on peut supposer que Y est final;
- En ne gardant dans $\mathcal{C}_{/Y}$ que les objets X tels que $X \to Y$ est dans E, et en ne considérant que les Y-morphismes qui sont dans E, on peut supposer que tout morphisme de \mathcal{C} est dans E.

Dualités: Foncteurs de Fourier-Mukai

Définition 2.4.1 (Foncteur de Fourier-Mukai)

Soient X et X' deux objets de $\mathcal C$ et $K\in \mathcal D(X\times X')$. Le foncteur de Fourier-Mukai de noyau K est

$$\begin{array}{cccc} \operatorname{FM}_K & : & \mathcal{D}(X) & \to & \mathcal{D}(X') \\ & A & \mapsto & \operatorname{pr}_{2!}(K \otimes \operatorname{pr}_1^*A) \end{array}$$

Dualités: Foncteurs de Fourier-Mukai

Définition 2.4.1 (Foncteur de Fourier-Mukai)

Soient X et X' deux objets de $\mathcal C$ et $K\in\mathcal D(X\times X')$. Le foncteur de Fourier-Mukai de noyau K est

$$\begin{array}{cccc} FM_K & : & \mathcal{D}(X) & \to & \mathcal{D}(X') \\ & A & \mapsto & pr_{2!}(K \otimes pr_1^*A) \end{array}$$

Remarque

Le composé de foncteurs de Fourier-Mukai est un foncteur de Fourier-Mukai.

Définition 2.4.2 (2-catégorie de Lu-Zheng)

La 2-catégorie de Lu-Zheng d'un formalisme à six foncteurs $\mathcal D$ a pour objets les objets de $\mathcal C$ et pour catégorie de morphismes $\operatorname{Hom}_{LZ_{\mathcal D}}(X,X')=\operatorname{h}\mathcal D(X\times X').$

Définition 2.4.2 (2-catégorie de Lu-Zheng)

La 2-catégorie de Lu-Zheng d'un formalisme à six foncteurs $\mathcal D$ a pour objets les objets de $\mathcal C$ et pour catégorie de morphismes $\operatorname{Hom}_{LZ_{\mathcal D}}(X,X')=\operatorname{h}\mathcal D(X\times X').$

• L'identité d'un objet X dans cette 2-catégorie est $\mathrm{id}_X = \Delta_! \mathbf{1}_X$.

Définition 2.4.2 (2-catégorie de Lu-Zheng)

La 2-catégorie de Lu-Zheng d'un formalisme à six foncteurs $\mathcal D$ a pour objets les objets de $\mathcal C$ et pour catégorie de morphismes $\operatorname{Hom}_{\mathsf{LZ}_{\mathcal D}}(X,X')=\operatorname{h}\mathcal D(X\times X').$

- L'identité d'un objet X dans cette 2-catégorie est $id_X = \Delta_! \mathbf{1}_X$.
- La composition dans $LZ_{\mathcal{D}}$ est donnée par la convolution des noyaux:

$$\begin{array}{cccc} \operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(X,X') \times \operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(X',X'') & \to & \operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(X,X'') \\ A,B & \mapsto & A \star B = \operatorname{pr}_{X,X''!}(\operatorname{pr}_{X,X'}^*(A) \otimes \operatorname{pr}_{X',X''}^*(B)) \end{array}$$

Définition 2.4.2 (2-catégorie de Lu-Zheng)

La 2-catégorie de Lu-Zheng d'un formalisme à six foncteurs $\mathcal D$ a pour objets les objets de $\mathcal C$ et pour catégorie de morphismes $\operatorname{Hom}_{\mathsf{LZ}_{\mathcal D}}(X,X')=\operatorname{h}\mathcal D(X\times X').$

- L'identité d'un objet X dans cette 2-catégorie est $id_X = \Delta_! \mathbf{1}_X$.
- La composition dans $LZ_{\mathcal{D}}$ est donnée par la convolution des noyaux:

$$\begin{array}{ccc} \operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(X,X') \times \operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(X',X'') & \to & \operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(X,X'') \\ A,B & \mapsto & A \star B = \operatorname{pr}_{X,X''!}(\operatorname{pr}_{X,X'}^*(A) \otimes \operatorname{pr}_{X',X''}^*(B)) \end{array}$$

• Cette 2-catégorie est auto-duale: $LZ_{\mathcal{D}}^{op} \simeq LZ_{\mathcal{D}}$.

Définition 2.4.2 (2-catégorie de Lu-Zheng)

La 2-catégorie de Lu-Zheng d'un formalisme à six foncteurs $\mathcal D$ a pour objets les objets de $\mathcal C$ et pour catégorie de morphismes $\operatorname{Hom}_{\mathsf{LZ}_{\mathcal D}}(X,X')=\operatorname{h}\mathcal D(X\times X').$

- L'identité d'un objet X dans cette 2-catégorie est $id_X = \Delta_! \mathbf{1}_X$.
- La composition dans $LZ_{\mathcal{D}}$ est donnée par la convolution des noyaux:

$$\begin{array}{ccc} \operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(X,X') \times \operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(X',X'') & \to & \operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(X,X'') \\ A,B & \mapsto & A \star B = \operatorname{pr}_{X,X''!}(\operatorname{pr}_{X,X'}^*(A) \otimes \operatorname{pr}_{X',X''}^*(B)) \end{array}$$

• Cette 2-catégorie est auto-duale: $LZ_{\mathcal{D}}^{op} \simeq LZ_{\mathcal{D}}$.

$$\begin{array}{cccc} LZ_{\mathcal{D}} & \to & \textbf{Cat} \\ X & \mapsto & h\mathcal{D}(X) \\ K \in h\mathcal{D}(X \times X') & \mapsto & FM_K \end{array}$$

Dualités: Poincaré

Définition 2.4.4 (Dualisant)

Le dualisant de f est

$$\omega_f = f!(\mathbf{1}_Y)$$

Définition 2.4.4 (Dualisant)

Le dualisant de f est

$$\omega_f = f!(\mathbf{1}_Y)$$

Définition 2.4.5 (Morphisme cohomologiquement lisse)

Le morphisme f est cohomologiquement lisse lorsque

- (i). Le morphisme $\omega_f \otimes f^*(-) \to f^!(-)$ est une équivalence;
- (ii). Le dualisant de f est \otimes -inversible;
- (iii). Pour tout carré cartésien

$$\begin{array}{ccc} X' & \xrightarrow{g'} & X \\ f' \downarrow & & \downarrow f \\ Y' & \xrightarrow{g} & Y \end{array}$$

Le morphisme f' vérifie les conditions (i) et (ii) et le morphisme $g'^*\omega_f\to\omega_{f'}$ est une équivalence.

Dualités: Poincaré

Théorème 2.4.6

f est cohomologiquement lisse si et seulement s'il existe un objet $\otimes\text{-inversible }L\in\mathcal{D}(X)$ et des morphismes

$$\alpha:\Delta_{f!}\mathbf{1}_X\to\operatorname{pr}_2^*L$$

et

$$\beta: f_!L \to \mathbf{1}_X$$

tels que les composés

$$\mathbf{1}_{X} \simeq \operatorname{pr}_{1!} \Delta_{f!} \mathbf{1}_{X} \xrightarrow{\alpha} \operatorname{pr}_{1!} \operatorname{pr}_{2}^{*} L \simeq f^{*} f_{!} L \xrightarrow{\beta} \mathbf{1}_{X}$$

et

$$L \simeq \operatorname{pr}_{2!}(\operatorname{pr}_1^*(L) \otimes \Delta_{f!}(\mathbf{1}_X)) \xrightarrow{\alpha} \operatorname{pr}_{2!}(\operatorname{pr}_1^*(L) \otimes \operatorname{pr}_2^*(L)) \simeq \operatorname{pr}_{2!} \operatorname{pr}_1^*(L) \otimes L \simeq f^*f_!(L) \otimes L \xrightarrow{\beta} L$$
 sont équivalents à l'identité.

Définition 2.4.7 (Objet f-lisse

Un objet $A \in \mathcal{D}(X)$ est *f-lisse* lorsque, vu dans $\operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(X,Y)$, c'est un adjoint.

Définition 2.4.7 (Objet f-lisse)

Un objet $A \in \mathcal{D}(X)$ est f-lisse lorsque, vu dans $\operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(X,Y)$, c'est un adjoint.

Définition 2.4.7 (Objet f-propre)

Un objet $A \in \mathcal{D}(X)$ est f-propre lorsque, vu dans $\operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(Y,X)$, c'est un adjoint.

Définition 2.4.7 (Objet f-lisse)

Un objet $A \in \mathcal{D}(X)$ est *f-lisse* lorsque, vu dans $\operatorname{Hom}_{LZ_{\mathcal{D}}}(X,Y)$, c'est un adjoint.

$$\begin{split} B &\in \mathcal{D}(X) = \operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(Y, X) \\ \alpha &: \Delta_{f!}(\mathbf{1}_X) \to \operatorname{pr}_1^*(A) \otimes \operatorname{pr}_2^*(B) \\ \beta &: f_!(A \otimes B) \to \mathbf{1}_Y \end{split}$$

Définition 2.4.7 (Objet *f*-propre)

Un objet $A \in \mathcal{D}(X)$ est f-propre lorsque, vu dans $\operatorname{Hom}_{\mathsf{LZ}_{\mathcal{D}}}(Y,X)$, c'est un adjoint.

Définition 2.4.7 (Objet *f*-lisse)

Un objet $A \in \mathcal{D}(X)$ est f-lisse lorsque, vu dans $\operatorname{Hom}_{\mathsf{LZ}_{\mathcal{D}}}(X,Y)$, c'est un adjoint.

$$\begin{split} B &\in \mathcal{D}(X) = \operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(Y, X) \\ \alpha &: \Delta_{f!}(\mathbf{1}_X) \to \operatorname{pr}_1^*(A) \otimes \operatorname{pr}_2^*(B) \\ \beta &: f_!(A \otimes B) \to \mathbf{1}_Y \end{split}$$

Définition 2.4.7 (Objet *f*-propre)

Un objet $A \in \mathcal{D}(X)$ est *f-propre* lorsque, vu dans $\operatorname{Hom}_{LZ_{\mathcal{D}}}(Y,X)$, c'est un adjoint.

$$B \in \mathcal{D}(X) = \operatorname{Hom}_{\operatorname{LZ}_{\mathcal{D}}}(X, Y)$$

$$\alpha : \operatorname{pr}_{1}^{*}(A) \otimes \operatorname{pr}_{2}^{*}(B) \to \Delta_{f!}(\mathbf{1}_{X})$$

$$\beta : \mathbf{1}_{Y} \to f_{!}(A \otimes B)$$

Définition 2.4.8 (Dual de Verdier)

Le dual de verdier d'un objet f-lisse $A \in \mathcal{D}(X)$ est

$$\mathbb{D}_f(A) = \mathcal{H}om(A, f^!(\mathbf{1}_Y))$$

Définition 2.4.8 (Dual de Verdier)

Le *dual de verdier* d'un objet f-lisse $A \in \mathcal{D}(X)$ est

$$\mathbb{D}_f(A) = \mathcal{H}om(A, f^!(\mathbf{1}_Y))$$

Proposition 2.4.7

Soit $A \in \mathcal{D}(X)$ un objet f-lisse, de co-adjoint $B \in \mathcal{D}(X)$.

1. B est f-lisse, de co-adjoint A.

Définition 2.4.8 (Dual de Verdier)

Le *dual de verdier* d'un objet f-lisse $A \in \mathcal{D}(X)$ est

$$\mathbb{D}_f(A) = \mathcal{H}om(A, f^!(\mathbf{1}_Y))$$

Proposition 2.4.7

Soit $A \in \mathcal{D}(X)$ un objet f-lisse, de co-adjoint $B \in \mathcal{D}(X)$.

- 1. *B* est *f*-lisse, de co-adjoint *A*.
- 2. Il y a une équivalence de foncteurs

$$B \otimes f^*(-) \simeq \mathcal{H}om(A, f^!(-)) : \mathcal{D}(Y) \to \mathcal{D}(X)$$

Définition 2.4.8 (Dual de Verdier)

Le *dual de verdier* d'un objet f-lisse $A \in \mathcal{D}(X)$ est

$$\mathbb{D}_f(A) = \mathcal{H}om(A, f^!(\mathbf{1}_Y))$$

Proposition 2.4.7

Soit $A \in \mathcal{D}(X)$ un objet f-lisse, de co-adjoint $B \in \mathcal{D}(X)$.

- 1. *B* est *f*-lisse, de co-adjoint *A*.
- 2. Il y a une équivalence de foncteurs

$$B \otimes f^*(-) \simeq \mathcal{H}om(A, f^!(-)) : \mathcal{D}(Y) \to \mathcal{D}(X)$$

3. Le morphisme naturel

$$A \to \mathbb{D}_f(\mathbb{D}_f(A))$$

est une équivalence.

Définition 2.4.8 (Dual de Verdier)

Le *dual de verdier* d'un objet f-lisse $A \in \mathcal{D}(X)$ est

$$\mathbb{D}_f(A) = \mathcal{H}om(A, f^!(\mathbf{1}_Y))$$

Proposition 2.4.7

Soit $A \in \mathcal{D}(X)$ un objet f-lisse, de co-adjoint $B \in \mathcal{D}(X)$.

- 1. *B* est *f*-lisse, de co-adjoint *A*.
- 2. Il y a une équivalence de foncteurs

$$B \otimes f^*(-) \simeq \mathcal{H}om(A, f^!(-)) : \mathcal{D}(Y) \to \mathcal{D}(X)$$

3. Le morphisme naturel

$$A \to \mathbb{D}_f(\mathbb{D}_f(A))$$

est une équivalence.

4. La formation du dual de Verdier commute au changement de base.

Proposition 2.4.10

Un objet $A \in \mathcal{D}(X)$ est f-lisse si et seulement si le morphisme naturel

$$\operatorname{pr}_1^*(A) \otimes \operatorname{pr}_2^*(\mathbb{D}_f(A)) \to \operatorname{\mathcal{H}\mathit{om}}(\operatorname{pr}_2^*(A),\operatorname{pr}_1^!(A))$$

est un isomorphisme.

Proposition 2.4.10

Un objet $A \in \mathcal{D}(X)$ est f-lisse si et seulement si le morphisme naturel

$$\operatorname{pr}_1^*(A) \otimes \operatorname{pr}_2^*(\mathbb{D}_f(A)) \to \operatorname{\mathcal{H}\mathit{om}}(\operatorname{pr}_2^*(A),\operatorname{pr}_1^!(A))$$

est un isomorphisme.

Proposition 2.4.12

Un objet $A \in \mathcal{D}(X)$ est f-propre si et seulement si le morphisme naturel

$$f_!(A \otimes \operatorname{pr}_{2*}(\mathcal{H}om(\operatorname{pr}_1^*(A), \Delta_{f!}(\mathbf{1}_X)))) \to f_*\mathcal{H}om(A, A)$$

est un isomorphisme.

Définition 2.5.1 (Morphisme cohomologiquement propre

Un morphisme $f: X \to Y$ dans E est cohomologiquement propre lorsque

- 1. *f* est *n*-tronqué pour un certain *n*;
- 2. $\mathbf{1}_X \in \mathcal{D}(X)$ est f-propre;
- 3. $\Delta_f: X \to X \underset{Y}{\times} X$ est cohomologiquement propre (ou une équivalence).

Définition 2.5.1 (Morphisme cohomologiquement propre)

Un morphisme $f: X \to Y$ dans E est cohomologiquement propre lorsque

- 1. *f* est *n*-tronqué pour un certain *n*;
- 2. $\mathbf{1}_X \in \mathcal{D}(X)$ est f-propre;
- 3. $\Delta_f: X \to X \underset{\gamma}{\times} X$ est cohomologiquement propre (ou une équivalence).

Proposition 2.5.2

Soit $f: X \to Y$ un morphisme dans E tel que Δ_f soit cohomologiquement propre.

1. Il y a une transformation naturelle

$$f_! \rightarrow f_*$$

- 2. Cette transformation est une équivalence lorsque f est cohomologiquement propre.
- 3. f est cohomologiquement propre si et seulement si $f_!(\mathbf{1}_X) \to f_*(\mathbf{1}_X)$ est une équivalence.

Définition 2.5.3 (Morphisme cohomologiquement étale

Un morphisme $f: X \to Y$ dans E est cohomologiquement étale lorsque

- (i). *f* est *n*-tronqué pour un certain *n*;
- (ii). $\mathbf{1}_X \in \mathcal{D}(X)$ est f-lisse;
- (iii). $\Delta_f: X \to X \underset{Y}{\times} X$ est cohomologiquement étale (ou une équivalence).

Définition 2.5.3 (Morphisme cohomologiquement étale)

Un morphisme $f: X \to Y$ dans E est cohomologiquement étale lorsque

- (i). *f* est *n*-tronqué pour un certain *n*;
- (ii). $\mathbf{1}_X \in \mathcal{D}(X)$ est f-lisse;
- (iii). $\Delta_f: X \to X \underset{V}{\times} X$ est cohomologiquement étale (ou une équivalence).

Proposition 2.5.4

Soit $f: X \to Y$ un morphisme dans E tel que Δ_f soit cohomologiquement étale.

1. Il y a une transformation naturelle

$$f^! \rightarrow f^*$$

- 2. Cette transformation est une équivalence lorsque f est cohomologiquement étale.
- 3. f est cohomologiquement étale si et seulement si $f^!(\mathbf{1}_Y) \to \mathbf{1}_X$ est une équivalence.

Définition 3.1.1 (Schéma dérivé)

Un sch'ema d'eriv'e est un espace topologique X muni d'un faisceau d'anneaux animés \mathscr{O}_X tel que $(X,\pi_0\mathscr{O}_X)$ est un schéma et chaque $\pi_i\mathscr{O}_X$ est un $\pi_0\mathscr{O}_X$ -module quasi-cohérent. Un morphisme de sch'emas d'eriv'es $(X,\mathscr{O}_X) \to (Y,\mathscr{O}_Y)$ est une application continue $f:X\to Y$ accompagnée d'un morphisme de faisceaux $f^\sharp:f^{-1}\mathscr{O}_Y\to\mathscr{O}_Y$ induisant un morphisme de schémas classiques.

Définition 3.1.1 (Schéma dérivé)

Un schéma dérivé est un espace topologique X muni d'un faisceau d'anneaux animés \mathscr{O}_X tel que $(X,\pi_0\mathscr{O}_X)$ est un schéma et chaque $\pi_i\mathscr{O}_X$ est un $\pi_0\mathscr{O}_X$ -module quasi-cohérent. Un morphisme de schémas dérivés $(X,\mathscr{O}_X) \to (Y,\mathscr{O}_Y)$ est une application continue $f:X\to Y$ accompagnée d'un morphisme de faisceaux $f^\sharp:f^{-1}\mathscr{O}_Y\to\mathscr{O}_Y$ induisant un morphisme de schémas classiques.

Remarque

Un schéma dérivé est dit *affine* lorsque le schéma classique $(X, \pi_0 \mathcal{O}_X)$ est affine.

Définition 3.1.2 (Module animé plat, morphisme d'anneaux plat)

Soit A un anneau animé. Un A-module M est plat lorsque $\pi_0(M)$ est un $\pi_0(A)$ -module plat et que, pour tout n, le morphisme induit

$$\pi_0(M) \underset{\pi_0(A)}{\otimes} \pi_n(A) \to \pi_n(M)$$

est un isomorphisme.

Un morphisme d'anneaux animés $A \rightarrow B$ est plat lorsqu'il fait de B un A-module plat.

Définition 3.1.3 (Morphisme de schémas dérivés plat)

Un morphisme de schémas dérivés $f: X \to Y$ est plat lorsque, pour tout ouvert affine $U \subset X$ et $V = f(U) \subset Y$, le morphisme d'anneaux animés induit en sections globales $\Gamma(V) \to \Gamma(U)$ est plat.

Définition 3.1.3 (Morphisme de schémas dérivés plat)

Un morphisme de schémas dérivés $f: X \to Y$ est *plat* lorsque, pour tout ouvert affine $U \subset X$ et $V = f(U) \subset Y$, le morphisme d'anneaux animés induit en sections globales $\Gamma(V) \to \Gamma(U)$ est plat.

Définition 3.1.4 (Morphisme étale, lisse)

Un morphisme de schémas dérivés est

étale lorsqu'il est plat et induit un morphisme étale de schémas classiques; *lisse* lorsqu'il est plat et induit un morphisme lisse de schémas classiques.

Définition 3.1.5 (Faisceau quasi-cohérent

Pour un anneau animé R, on note $\mathcal{D}(R)$ l' ∞ -catégorie dérivée des faisceaux de modules sur $\operatorname{Spec}(R)$.

Définition 3.1.5 (Faisceau quasi-cohérent

Pour un anneau animé R, on note $\mathcal{D}(R)$ l' ∞ -catégorie dérivée des faisceaux de modules sur $\operatorname{Spec}(R)$.

On note $\mathcal{D}_{qc}(X)$ l' ∞ -catégorie dérivée des faisceaux *quasi-cohérents* sur X.

Définition 3.1.5 (Faisceau quasi-cohérent)

Pour un anneau animé R, on note $\mathcal{D}(R)$ l' ∞ -catégorie dérivée des faisceaux de modules sur $\operatorname{Spec}(R)$.

On note $\mathcal{D}_{qc}(X)$ l' ∞ -catégorie dérivée des faisceaux *quasi-cohérents* sur X.

Définition 3.1.6 (Faisceau pseudo-cohérent, cohérent)

Soit A un anneau animé. Un complexe $K \in \mathcal{D}(A)$ est pseudo-cohérent lorsque, pour tout n, il existe un complexe parfait K_n et un morphisme $K_n \to K$ dont le cône est en degré supérieur à n; cohérent lorsqu'il est pseudo-cohérent et borné.

Définition 3.1.5 (Faisceau quasi-cohérent)

Pour un anneau animé R, on note $\mathcal{D}(R)$ l' ∞ -catégorie dérivée des faisceaux de modules sur $\operatorname{Spec}(R)$.

On note $\mathcal{D}_{qc}(X)$ l' ∞ -catégorie dérivée des faisceaux *quasi-cohérents* sur X.

Définition 3.1.6 (Faisceau pseudo-cohérent, cohérent)

Soit A un anneau animé. Un complexe $K \in \mathcal{D}(A)$ est pseudo-cohérent lorsque, pour tout n, il existe un complexe parfait K_n et un morphisme $K_n \to K$ dont le cône est en degré supérieur à n; cohérent lorsqu'il est pseudo-cohérent et borné.

On note $\operatorname{Perf}(X)$ l' ∞ -catégorie des complexes parfaits de \mathscr{O}_X -modules. On note $\operatorname{Coh}(X)$ l' ∞ -catégorie des complexes cohérents de \mathscr{O}_X -modules.

Définition 3.1.5 (Faisceau quasi-cohérent)

Pour un anneau animé R, on note $\mathcal{D}(R)$ l' ∞ -catégorie dérivée des faisceaux de modules sur $\operatorname{Spec}(R)$.

On note $\mathcal{D}_{qc}(X)$ l' ∞ -catégorie dérivée des faisceaux *quasi-cohérents* sur X.

Définition 3.1.6 (Faisceau pseudo-cohérent, cohérent)

Soit A un anneau animé. Un complexe $K \in \mathcal{D}(A)$ est pseudo-cohérent lorsque, pour tout n, il existe un complexe parfait K_n et un morphisme $K_n \to K$ dont le cône est en degré supérieur à n; cohérent lorsqu'il est pseudo-cohérent et borné.

On note $\operatorname{Perf}(X)$ l' ∞ -catégorie des complexes parfaits de \mathscr{O}_X -modules. On note $\operatorname{Coh}(X)$ l' ∞ -catégorie des complexes cohérents de \mathscr{O}_X -modules.

Remarque

$$\mathcal{D}_{qc}(X) = Ind(Perf(X))$$

Définition 3.1.7 (Schéma dérivé noethérien)

Un schéma dérivé X est *noethérien* lorsque le schéma classique $(X, \pi_0 \mathscr{O}_X)$ est noethérien et que $\pi_i \mathscr{O}_X$ est un $\pi_0 \mathscr{O}_X$ -module cohérent pour tout i.

Définition 3.1.7 (Schéma dérivé noethérien)

Un schéma dérivé X est *noethérien* lorsque le schéma classique $(X, \pi_0 \mathscr{O}_X)$ est noethérien et que $\pi_i \mathscr{O}_X$ est un $\pi_0 \mathscr{O}_X$ -module cohérent pour tout i.

Théorème 3.1.8

Soit (X,\mathscr{O}_X) un schéma dérivé cohérent. Alors $K\in\mathcal{D}_{\mathrm{qc}}(X)$ est pseudo-cohérent si et seulement si tous les π_iK sont des $\pi_0\mathscr{O}_X$ -modules cohérents.

Définition 3.1.7 (Schéma dérivé noethérien)

Un schéma dérivé X est *noethérien* lorsque le schéma classique $(X, \pi_0 \mathscr{O}_X)$ est noethérien et que $\pi_i \mathscr{O}_X$ est un $\pi_0 \mathscr{O}_X$ -module cohérent pour tout i.

Théorème 3.1.8

Soit (X, \mathscr{O}_X) un schéma dérivé cohérent. Alors $K \in \mathcal{D}_{qc}(X)$ est pseudo-cohérent si et seulement si tous les $\pi_i K$ sont des $\pi_0 \mathscr{O}_X$ -modules cohérents.

Remarque

En particulier, toute troncature de *K* est alors pseudo-cohérente.

Définition 3.1.9 (Morphisme presque de présentation finie

Un morphisme d'anneaux animés $f:A\to B$ est presque de présentation finie lorsqu'il existe une factorisation

$$A \to A[X_1,\ldots,X_n] \to B$$

telle que B est un $A[X_1, \ldots, X_n]$ -module pseudo-cohérent.

Définition 3.1.9 (Morphisme presque de présentation finie)

Un morphisme d'anneaux animés $f:A\to B$ est presque de présentation finie lorsqu'il existe une factorisation

$$A \to A[X_1,\ldots,X_n] \to B$$

telle que B est un $A[X_1, ..., X_n]$ -module pseudo-cohérent.

Définition 3.1.10 (Morphisme propre)

Un morphisme de schémas dérivés est *propre* lorsqu'il est presque de présentation finie et qu'il induit un morphisme propres de schémas classiques.

Définition 3.1.9 (Morphisme presque de présentation finie)

Un morphisme d'anneaux animés $f:A\to B$ est presque de présentation finie lorsqu'il existe une factorisation

$$A \to A[X_1,\ldots,X_n] \to B$$

telle que B est un $A[X_1, \ldots, X_n]$ -module pseudo-cohérent.

Définition 3.1.10 (Morphisme propre)

Un morphisme de schémas dérivés est *propre* lorsqu'il est presque de présentation finie et qu'il induit un morphisme propres de schémas classiques.

Théorème 3.1.11

Soit $f:X\to Y$ un morphisme propre de schémas dérivés quasi-compacts et quasi-cohérents. Alors f^* préserve la pseudo-cohérence et la cohérence. De plus, lorsque f est de Tor-dimension finie, f^* préserve la perfection.

Proposition 3.2.1

Soit $f: X \to Y$ un morphisme de \mathcal{C} . Alors f^* admet un co-adjoint co-continu qui vérifie les formules de projections et de changement de base.

Proposition 3.2.1

Soit $f:X\to Y$ un morphisme de $\mathcal C$. Alors f^* admet un co-adjoint co-continu qui vérifie les formules de projections et de changement de base.

Proposition 3.2.2

Soit $f:X\to Y$ un morphisme propre de Tor-dimension finie. Alors f^* admet un adjoint f_\sharp vérifiant les formules de projection et de changement de base, donné par

$$\begin{array}{cccc} f_{\sharp} & : & \operatorname{Ind}(\operatorname{Perf}(X)) & \to & \operatorname{Ind}(\operatorname{Perf}(Y)) \\ & & \operatorname{colim}_{i} P_{i} & \mapsto & \operatorname{colim}_{i}(f_{*}(P_{i}^{\vee}))^{\vee} \end{array}$$

Proposition 3.2.1

Soit $f:X\to Y$ un morphisme de $\mathcal C$. Alors f^* admet un co-adjoint co-continu qui vérifie les formules de projections et de changement de base.

Proposition 3.2.2

Soit $f:X\to Y$ un morphisme propre de Tor-dimension finie. Alors f^* admet un adjoint f_\sharp vérifiant les formules de projection et de changement de base, donné par

$$\begin{array}{cccc} f_{\sharp} & : & \operatorname{Ind}(\operatorname{Perf}(X)) & \to & \operatorname{Ind}(\operatorname{Perf}(Y)) \\ & & \operatorname{colim}_{i}P_{i} & \mapsto & \operatorname{colim}_{i}(f_{*}(P_{i}^{\vee}))^{\vee} = \operatorname{colim}_{i}\operatorname{\mathcal{H}om}(f_{*}\operatorname{\mathcal{H}om}(P_{i},\mathscr{O}_{X}),\mathscr{O}_{Y}) \end{array}$$

Tout est propre

Théorème 3.2.3

Pour tout morphisme propre de Tor-dimension finie $f:X\to Y$, \mathscr{O}_X est f-lisse.

Tout est propre

Théorème 3.2.3

Pour tout morphisme propre de Tor-dimension finie $f: X \to Y$, \mathcal{O}_X est f-lisse.

Remarque

En particulier,

$$\omega_f \simeq \mathbb{D}_f(\mathscr{O}_Y)$$

Tout est propre

Théorème 3.2.3

Pour tout morphisme propre de Tor-dimension finie $f: X \to Y$, \mathscr{O}_X est f-lisse.

Remarque

En particulier,

$$\omega_f \simeq \mathbb{D}_f(\mathscr{O}_Y)$$

Proposition 3.2.4

Soit $f:X\to Y$ un morphisme propre et lisse de schémas dérivés. Alors f et Δ_f sont cohomologiquement lisses.

De plus, le dualisant de f est \otimes -inverse du dualisant de Δ_f , et est donc local sur X.

P immersions ouvertes, I propres et Tor-dimension finie

Théorème 3.2.5 (Compactification de Nagata dérivée)

Soit $f: X \to Y$ un morphisme presque de présentation finie entre schémas dérivés. Alors il existe une factorisation

$$X \stackrel{j}{\rightarrowtail} \overline{X} \stackrel{\overline{f}}{\longrightarrow} Y$$

avec j une immersion ouverte et \bar{f} un morphisme propre.

P immersions ouvertes, I propres et Tor-dimension finie

Théorème 3.2.5 (Compactification de Nagata dérivée)

Soit $f: X \to Y$ un morphisme presque de présentation finie entre schémas dérivés. Alors il existe une factorisation

$$X \stackrel{j}\rightarrowtail \overline{X} \stackrel{\overline{f}}\to Y$$

avec j une immersion ouverte et \bar{f} un morphisme propre.

Proposition 3.2.6

Dans le carré cartésien

$$\begin{array}{ccc}
X' & \xrightarrow{g'} & X \\
f' \downarrow & & \downarrow f \\
Y' & \xrightarrow{g} & Y
\end{array}$$

où f est propre et de Tor-dimension finie et g est une immersion ouverte, le morphisme naturel

$$f_{\sharp}g'_{*} \rightarrow g_{*}f'_{\sharp}$$

est une équivalence.

Remplacer Ind(Perf) par Pro(Perf)

$$\mathcal{D}_{qc}(X) = Pro(Perf(X)) = Ind(Perf(X)^{op})^{op}$$

Remplacer Pro(Perf) par Pro(Coh)

Théorème 3.2.8

Le foncteur

$$X \mapsto \operatorname{Pro}(\operatorname{Coh}(X))$$

s'étend en un formalisme à six foncteurs, avec I la classe des immersions ouvertes et P la classe des morphismes propres.

Remplacer Pro(Perf) par Pro(Coh)

Théorème 3.2.8

Le foncteur

$$X \mapsto \operatorname{Pro}(\operatorname{Coh}(X))$$

s'étend en un formalisme à six foncteurs, avec I la classe des immersions ouvertes et P la classe des morphismes propres.

Proposition 3.2.9

Soit $f:X\to Y$ un morphisme séparé de schémas dérivés noethériens presque de type fini. Soit $K\in \operatorname{Coh}(X)\subset\operatorname{Pro}(\operatorname{Coh}(X))$ de Tor-dimension finie sur Y. Alors K est f-lisse.

Remplacer Pro(Perf) par Pro(Coh)

Théorème 3.2.8

Le foncteur

$$X \mapsto \operatorname{Pro}(\operatorname{Coh}(X))$$

s'étend en un formalisme à six foncteurs, avec I la classe des immersions ouvertes et P la classe des morphismes propres.

Proposition 3.2.9

Soit $f: X \to Y$ un morphisme séparé de schémas dérivés noethériens presque de type fini. Soit $K \in \text{Coh}(X) \subset \text{Pro}(\text{Coh}(X))$ de Tor-dimension finie sur Y. Alors K est f-lisse.

En particulier, si Y est un schéma classique régulier, alors tout $K \in Coh(X)$ est f-lisse et Coh(X) est auto-dual par la dualité de Verdier

$$\mathbb{D}_f(K) = \mathcal{H}om(K, f^! \mathcal{O}_Y)$$

Remplacer Pro(Coh) par Ind(Coh)

Remplacer Pro(Coh) par Ind(Coh)

$$X \mapsto \mathcal{D}_{qc}(X)$$

$$X \mapsto \operatorname{Ind}(\operatorname{Coh}(X))$$

Remplacer Pro(Coh) par Ind(Coh)

$$X \mapsto \mathcal{D}_{qc}(X)$$

$$X \mapsto \operatorname{Ind}(\operatorname{Coh}(X))$$

$$\mathcal{D}_{qc}(X) = Ind(Perf(X)) \simeq Ind(Perf(X)^{op}) \rightarrow Ind(Coh(X)^{op}) \simeq Ind(Coh(X)) = IndCoh(X)$$

Merci de votre attention

Bibliographie

- Peter Scholze, Six-Functor Formalisms, 2022
- Lucas Mann, A p-Adic 6-Functor Formalism in Rigid-Analytic Geometry, 2022
- Jacob Lurie, Higher Topos Theory. Princeton, 2009.
- Jacob Lurie, Higher Algebra. Harvard, 2017.
- Kerodon et nLab.